
Meshing Payments and Technology
A White Paper
Open Payment Framework

© 2009 – Clear2Pay NV – All rights reservedClarity in Payments

Clear2Pay White Paper2

Table of Contents

Executive Summary 3

A Technological Shift 3

Business Driven Solutions 3

The Response 3

Business-Led Payment Strategy 4

Next Generation Payment Frameworks 4

Current State of Play 4

The Third Way 4

Componentised Business Process Management 5

An Enabling Technology 6

Service-Oriented Architecture and Web Services 6

Composite Application Freedom 8

Asynchronous Flow Services 8

Business Strategy via Open Frameworks 9

The Impetus behind Open Frameworks 9

Integration through Cohesion 10

Benefit Analysis 10

Unifying Architecture 11

Interoperability and Vendor Adoption 11

Legacy Crusader 11

Equaliser 12

Business Self-Determination 12

Buy versus Build – Migration Strategy 12

The Response 13

The Open Payment Framework 13

The SDK – Customisation through Extension Points 16

Future Perspective 18

3Clarity in Payments

Executive Summary

We are in the midst of a period of hectic realignment of payment infrastructures; regulatory change, Eurozone

harmonisation, reduced revenues, expansive territorial strategies and, critically, technological advancement.

Payment systems are moving away from the monolithic silos, deemed unresponsive, closed and expensive

to maintain. A new generation of component based solutions are making the best use of incumbent systems

by coupling them into open infrastructures allowing full and close integration of disparate services into a

cohesive whole.

The one constant, as ever, is change; whether this originates from regulatory change, technology fashion, bank

strategy realignment or customer expectations. The bottom line is that business managers need more agility

and adaptability from their underlying infrastructure if they are to maintain or grow their market position. Open

component based frameworks, coupled technology developments like Service-Oriented Architecture (SOA) that

enable much greater customisation and adaptability of solutions, reduce implementation risks and increase

system responsiveness to changing business needs.

A Technological Shift

The payments market is closely monitoring significant technical developments such as the Service-Oriented

Architecture standards and their underlying Web Services technology. This development is particularly relevant

for large scale enterprises offering a cooperative framework for building large scale IT systems. Service-

Oriented Architecture based infrastructure promises an alternative to traditional buy vs. build decisions offering

a middle way. Maximising independence, reusability and interoperability, business applications are constructed

from services which can be configured to meet changing requirements.

Business Driven Solutions

Embracing the Service-Oriented Architecture and the open platforms has many potential benefits. Existing

investment is protected by exposing them to the payments framework as web services. Such re-use of existing

systems is augmented by re-use of service resources across the enterprise. Open platforms, by their nature,

offer unrivalled service interoperability and scalability through loosely coupled, asynchronous architectures,

allowing for easier growth of clients and service scope. Most importantly, open frameworks allow the speedy

publication of new services and products without lengthy and costly implementation cycles.

The Response

Clear2Pay offers world class solutions based on the Open Payment Framework (OPF). The Open Payment

Framework (OPF) from Clear2Pay is a library of component building blocks from which payments solutions can

be derived. The Open Payment Framework is built entirely on a Service-Oriented Architecture (SOA) delivering

common, reusable services consisting of a comprehensive data model, choreographed payment business

processes and configurable services including parsing, validation, cost based routing, warehousing security,

auditing and many more.

Clear2Pay’s Core Open Payment Framework ships with a comprehensive Software Development Kit (SDK). The

SDK changes the paradigm of a “buy versus build” decision to a “buy and build”. Through documented APIs,

customisation patterns and a suite of reusable frameworks, the SDK offers our customers the ability to add,

change and round out components to meet their unique requirements. Time to market is an essential ingredient

of maintaining a competitive edge, so whether it is with a 3rd party Systems Integrator, the Bank’s own IT

department or Clear2Pay, the SDK provides the Bank with all the necessary tools to implement and round-out a

complete payments solution.

Clear2Pay White Paper4

Business-Led Payment Strategy

While the much vaunted dream of IT systems created by business people to solve business problems without a

technical expert in sight may be too far fetched, this is certainly the direction the technology is leading us. Agility

is the strategy maxim whereby financial institutions can adapt to changing payment market circumstances. Can

technology underpin this? The future promises IT systems created by business people meeting their specialist

needs without prohibitive development delays and costs.

This White Paper aims to review current best practice in payments and the recent technology shifts that aim to

deliver true generic, interoperable and cooperative payment solutions.

Next Generation Payment Frameworks

The single most important technical development of recent times is the imminent adoption of the Service-Oriented

Architecture (SOA) standards and their underlying Web Services technology. This way of working defines a

cooperative framework for building large enterprise IT systems. Business managers can create the IT functionality

they need to support their business initiatives without long IT department backlogs for development.

To reiterate, assume the business climate changes and the business processes need to adapt accordingly, the

business manager can make the necessary changes to the IT system online at minimal expense and without

protracted IT development project. The implications are potentially enormous. As if this was not enough, SOA

and related web services forces IT departments to speak business language rather than techno-speak and

further forcing technology into step with the business strategy.

Current State of Play

Financial institutions typically build and maintain their own custom applications to service their niche

requirements. If banks do not build their own systems, they are forced to modify their procedures to match a

packaged solution’s capability. Either way it is a costly exercise and wrestles control of the process away from

those that know it best.

Often, technical capability is duplicated across numerous departments and lines of business and any need for

these diverse IT systems to inter-communicate results in a major project with significant cost and time delay.

This working paradigm has automated much of the financial business processes but has inevitably become

operationally unworkable and intellectually limiting.

The Third Way

The overused term “legacy system” was coined to describe out-dated, monolithic, custom made systems

that have grown difficult to maintain and yet harder to replace. Packaged applications bring their own issues.

Modifying a package to meet specific business and locale needs is expensive, risk heavy and typically results in

inadequate installations that leave the financial institution impeded for the long-term.

SOA promises an alternative. Under SOA, business applications are constructed from independent, reusable,

interoperable services that can be reconfigured with minimal technical know-how and effort. The reality is that

business managers will routinely assemble technology services from reusable components developed by their

IT department or from freely available niche services available on the market. It creates a buy-and-build-and-

partner model.

5Clarity in Payments

Packaged products, while not providing extensive flexibility have the advantage of upgrades and maintenance

as part of a normal 3rd party product life-cycle. Custom development, however, offers all the flexibility but

without the safety net relying on bespoke maintenance at higher cost and risk. Combining the 2 offering

schemes into a component implementation offers extensive customisation with the reassurance of a packaged

product offering.

Componentised Business Process Management

Changes in the processes flows have a limited impact on components/systems that execute the process functions.

Therefore, it becomes easier to support multiple processes (e.g. per legal entity, product and/or customer). This

fits nicely together with other components and/or services of the bank promoting many benefits:

Re-use of existing components/applications v

Reduction of decommissioning

Acceleration of implementation time-lines

Strong emphasis on integration by using industry standards (WSDL/SOAP, BPEL, J2EE, etc.).

Makes gradual migration easier v

Acceleration of implementation time-lines (time-to-market)

Reduction of (big-bang) migration risks

Increased ROI by bringing quick wins forward in time

The march towards more flexibility through out-sourcing (and therefore, in-sourcing for some bank business

models) continues. Such capability enhances such future strategic alignment and offers better monitoring and

control of processes.

The outcome is systems that are highly scalable and fault-tolerant through extensive business process

management technology and SOA; applications particularly suited for adaptation and customisation without

impact on the core product.

▪

▪

▪

▪

▪

▪

▪

▪

Clear2Pay White Paper6

An Enabling Technology

What are Service-Oriented Architectures (SOA) and web services? If the hype is to be believed, the march

towards this new horizon is unstoppable and the benefits to enterprise agility are boundless. Below we examine

the technology in more detail and discuss how combining SOA developments with modern data management

techniques offer incremental added value through adaptive services and data.

Service-Oriented Architecture and Web Services

Service-Oriented Architecture and web services express a business-driven approach to software architecture

that supports integrating the business as a set of linked, repeatable business tasks, or “services”. Services

are self-contained, reusable software components with well-defined interfaces and are independent from the

consuming application; composite SOA applications can invoke services that may, and often will, run on an

entirely different infrastructure.

SOA helps build composite applications, which are applications that draw upon functionality from multiple sources

within and beyond the enterprise to support horizontal business processes. SOA helps businesses innovate by

ensuring that IT systems can adapt quickly, easily and economically to support rapidly changing business needs.

SOA is largely based on a set of web services standards (e.g. SOAP) that have gained broad acceptance over the

past several years. These standards have resulted in greater interoperability and avoidance of vendor lock-in.

However, one can implement SOA using any service-based technology.

There are three distinct philosophies for each step that business has taken to adapt to requirements

integration:

Vertical silos of integration – keeping all applications and systems with similar functionality integrated

with each other, but not accounting for applications that may wish to use their core functionality in the

future.

Horizontal integration – integration of some but not all similar functionality across vertical systems; for

example, using common payments, routing, verification, clearing, etc.

The Service-Oriented Architecture – an environment of ubiquitous service providers and service

consumers interoperating with each other in a secure and consistent manner.

So, how does SOA compare with traditional architectures? SOA is not contrary to object-oriented (OO)

architectures; rather, SOA can be viewed as “macro” OO because both models are based on the same key

principles. OO introduced the concept of encapsulation - hiding the implementation details of an object behind

a well-defined interface. However, in OO, what an object does (its functionality or behaviour) is intrinsically tied

to the data itself. Over time, professional developers recognised the limitations of this approach and envisioned

an alternative in which behaviour could be duplicated and evolved outside of data over time.

▪

▪

▪

�Clarity in Payments

The Loose Coupling of Services
SOA is a style of enterprise architecture that enables the creation of applications that are built by combining loosely

coupled and interoperable services. These services interoperate based on a formal definition (or contract) which

is independent from the underlying platform and programming language. The interface definition encapsulates

(hides) the language-specific service implementation. A SOA is independent of development technology (such as

Java, .NET etc) and is therefore vendor independent. The software components become very reusable because

the interface is standards-compliant (e.g. WSDL) and is independent from the underlying implementation. So,

for example, a C# (C Sharp) service could be used by a service consumer developed in Java.

SOA can support integration and consolidation activities within complex enterprise systems, but SOA does not

specify or provide a methodology or framework for documenting capabilities or services.

Collaborative Services
Process Definition languages such as BPEL (Business Process Execution Language) and specifications such

as WS-Coordination extend the service concept further by providing a method of defining and supporting

orchestration of fine grained services into coarser grained business services. This in turn can be incorporated

into workflows and business processes implemented in composite applications or portals without any significant

impact on performance.

So, SOA is a collection of web services brought together to accomplish business tasks. These tasks may be to

check a balance, route a payment based on criteria, check for fraud, etc. In the same way that the early 3rd

generation programming languages of the 1980s (Pascal, C, etc.) greatly simplified and sped up IT developments;

and object-oriented techniques (Java, COM, etc.) improved and opened up IT development in the 1990s, SOA

advocates claim its potential is much greater.

The unprecedented flexibility of SOA is achieved because the services are accessed through standards. Business

processes can be altered quickly and software applications can be easily integrated without the need for a

lengthy, traditional IT project.

Collaboration is the watchword. Service-Oriented Architectures can interact seamlessly with systems and services

outside the organisation. Customers and suppliers are now very much part of the online bigger picture. Add to

this the fact that because these composite applications are much smaller and simpler than traditional hardwired

applications, they are simpler and much cheaper to maintain. Building such “composite applications” in SOA can

be done in languages such as Java or more appropriately, in BPEL with its externalised logic capabilities.

Clear2Pay White Paper8

Composite Application Freedom

An underlying principle of SOA is the definition of the business process flow and the process model itself. The

process flow defines the order in which the processes are carried out and details the conditions under which

they operate. Creating composite applications with BPEL combines the legacy service wrapped in a web service

layer with new systems to offer new capabilities.

Each element within the process flows can be manipulated and refined with no impact on the rest of the system.

For example, the submitter comes as a selection of predefined options. These can be further customised to

meet specific needs and rules without impacting other flows.

Each element within the processes could be external calls to 3rd party elements or established internal

applications such as CRM or other back office services. This allows for maximising the return on investment on

legacy solutions and also reducing risk by utilising established and proven internal infrastructure.

Asynchronous Flow Services

Such is the sophistication of SOA that the flows can be completely asynchronous. This implies that the process

steps and decision points do not necessarily need to be processed serially but can be stored awaiting further

actions, maybe manual correction. Once the conditions are satisfied, the process flow can begin again.

The area of customer interaction, whether bank administration, 3rd party or true customer, benefits greatly from

this flexibility. The process workflow manages the entire process but asynchronous flows permits modification

and pausing within the process depending on the entity and its state. A payment may be ‘parked’ or ‘hydrated’

awaiting a manual intervention. Once continuation criteria are met (the payment is corrected), the payment is

‘dehydrated’ and it continues to the completion of the process flow.

All this is related to the workflow; one can add user defined tasks and include human intervention (repair)

as needed.

9Clarity in Payments

Business Strategy via Open Frameworks

The payments business is championed by the business strategy. Over the past decade, IT automation has made

great strides in efficiency, process excellence and most importantly, in revenue. The watchwords of today focus

more on business agility, adaptability and flexibility: the landscape changes rapidly, the winners are those that

can adapt to the change the best. While leading IT solutions can facilitate such agility, without a strategic and

tactical orientation from the business strategists, the best IT systems just push files around.

To put it another way, as British chess champion Gerald Abrahams once stated, “Good positions don’t win

games: good moves do.” It is the long-game that matters; a solid position today is no guarantee of a secure

situation in the future. Business goals need to be reflected at the micro as well as the macro level. Powerful

moves to make a small refinement to a payment product or clearing route are as important as overall payment

strategy. IT systems that can deliver such suppleness through configuration and dynamic customisation will win

in the short and long term.

What do banks really need from IT solutions to ensure the strategy can be met? The primary goal

is the removal of the high cost of introducing and integrating new IT systems and functionality. Big-bang

implementations are now, by mutual consent, consigned to history, with the exception of green-field sites or

where the incumbent solution is totally out-dated. Paced or trickle releases are more appropriate to ensure a

smooth and managed transition gaining the benefits of the established solutions augmented by the value-adding

new. The underlying goal is to have an IT infrastructure that truly supports the rapid exploitation of business

opportunities, timely response to market environments, or the ability to better comply to regulatory mandates.

If this can be achieved while better leveraging prior investment in IT assets, then so much the better. And, if

new solutions can be implemented which are, from conception, free from any lock-in to proprietary and vendor

specific systems and technologies, then solution openness will deliver the necessary freedom.

The Impetus behind Open Frameworks

Embracing the Service-Oriented Architecture (SOA) and the open platforms and architectures that it underpins

offers six primary returns:

Investment protection

Exposing existing legacy application code as web services re-uses existing applications

Reusability

Publication of services through service registries allows resource sharing across the enterprise

Interoperability

Regardless of platform and vendor through a maturing set of Web Service Interoperability (WS-I)

standards, etc.

Scalability

Replaces tightly coupled application-to-service environments with loosely coupled, asynchronous,

course grained architectures, allowing for easier growth of clients and services

Flexibility

New business services easily added and extended

Cost efficiency

Customised solutions are expensive to build and maintain

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

Clear2Pay White Paper10

Integration through Cohesion

The Service-Oriented Architecture (SOA) model, leveraging the power of web services and service orientated

development, has captured the attention of organisations worldwide with its promise of interoperability between

legacy systems and new applications. As a result, IT decision-makers are turning to this promising technology

to enable their business applications to adapt to customer needs and market changes over time. While agility

as the primary benefit of SOA is laudable, measuring agility and putting a cost to it which can be justified is

another matter entirely.

The SOA project lifecycle also differs from that of a traditional application. In contrast to a traditional application,

building a service-oriented application requires considerably more discipline and upfront focus on the application

design. Skilled architects must think through the best approach to solving the business problem, the most

beneficial way to partition functionality into services, and the ideal coupling of these services into a working

application. This increased focus on the design phase of the project means that it will likely take more time

and resources to deliver the first version of a service oriented application. However, the rapid integration

and reusability benefits gained by making this initial investment mean that future enhancements to the SOA

application can be delivered faster and with less risk and cost.

SOA certainly promises to be the future of IT services by enabling the integration of virtually all IT resources,

including isolated data “silos” and previously incompatible legacy, .NET and Java technology applications.

A decade of deregulation has changed the financial services landscape, fuelling globalisation and consolidation,

and intensifying competition. Legislation introduced over the past three years has forced regulatory compliance

to the top of the agenda for most CIOs. They are also under pressure to manage IT in a way that can help them

regain their customers’ trust in the wake of the accounting scandals. Cost pressures and decreasing margins are

forcing businesses to find new ways to better leverage IT assets, and do more with less.

A Service-Oriented Architecture, when implemented effectively, can enable financial services companies to better

leverage and integrate IT assets, while increasing flexibility to respond to business change and opportunity.

Benefit Analysis

The much vaunted SOA benefit of agility is not, however, the end of the story. SOA promises wide ranging

advantages in the cost of ownership, increased revenue, time to market and risk reduction.

Cost of Ownership

Easier to outsource and offshore developments

Facilitate business process improvement

Opportunity to retire and/or consolidate redundant systems

Increasingly real-time operations

Increased STP opportunity reducing manual intervention

Service based reuse of applications across enterprise

Greater value from IT resources

Shared services creates economies of scale

Standardisation of infrastructure platform

Reduced support, testing, integration & acquisition costs

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

11Clarity in Payments

Increased Revenue

Improved business design

Productising of business services

Service based business platform enables collaborative business models

Time to Market

Creation of standalone capabilities

Separation of application, process and data layers increases business agility

High levels of reuse increases productivity

Predictable impact from known dependencies simplifies response to market behaviour

Faster response to new channel requirements

Fast heterogeneous linking of services speeds up creation

Reduced Risk

Loose coupling and modularity implies higher responsiveness to change

High predictability supports strategic business planning

Shared services allows regulatory compliance

Reuse of standard, trusted services and components

Reduced reliance on specific technology

Unifying Architecture

SOA allows businesses to better leverage their investments in technology by promoting wrap and reuse of their

existing IT assets. It provides the framework and infrastructure to expose business functionality as loosely

coupled, reusable services, thus enabling significant cost savings and faster returns on investment.

Through the use of business process management, SOA makes business applications more agile and improves

the ability of the business to respond to changing customer demands and emerging competitive forces.

Interoperability and Vendor Adoption

Standards are what set SOA apart from previous generations of (normally proprietary) integration technology.

The SOA standards have been defined for many years but it is only now that they have matured. Encouragingly,

virtually every software tool or application vendor, across all markets, is supporting the adoption of the

technology. The largest forces in packaged software are employing SOA to deal with their own complexity

problems. Their products are getting big and cumbersome and need to be streamlined into manageable

component building blocks.

From a vendor perspective, it is advantageous to be able to easily integrate with another vendors’ software as

this implies an increased functionality proposition of the combined solution.

Legacy Crusader

SOA offers the first real solution to the perennial problem of incumbent legacy systems. Such systems sit

comfortably and have an extended lifespan within a SOA. Replacement is positively discouraged. SOA

environments are comfortable linking modern web services to mainframes through the use of SOA wrappers

or enablers. In fact, wrapping SOA around selected mainframe provisions, such as fraud detection, increases

overall reliability and time-to-market.

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

Clear2Pay White Paper12

Equaliser

Possibly the most compelling impact of SOA is how it may alter organisational and governance structures.

Typically, IT managers are linked to specific applications and the business unit they support. Because SOA

enables solutions that transcend lines of business, IT managers can decouple from the applications they manage

and bask in the broader view of the potential they can deliver.

The hope is that IT will design services that enable companies to bring distinctive capabilities, products and

services to market quickly.

Business Self-Determination

SOA’s new paradigm ensures that the business drives how its IT works, rather than vice versa, leaving it free to

focus on its areas of core competence and achieve a higher level of IT-enabled business agility. Furthermore,

SOA champions the release of “trapped” ROI from previous IT projects, by better leverage and reuse of existing

IT functionality.

In general, SOA offers much greater freedom of choice on procurement of new IT platforms and products: build

new solutions by mixing component services made up from legacy applications, various vendor products and

some bespoke development resulting in better reuse and leverage of new investment. In conclusion, the new

technology offers the improved ability to monitor and audit business processes, and comply with regulations.

The Business Activity Monitor (BAM) is part of the BPEL specifications and enables the tracking of the statuses

within composite applications. Applications can be interrogated to uncover the number of payments processed

or pending and their detailed statuses.

With the logic externalised, the composite applications can be developed in BPEL. BPEL allows non-technical

staff to draw the preferred flow for a particular process and define its path and exceptions without resorting to

coding through the use of configuration variables.

Buy versus Build – Migration Strategy

Adopting a Service-Oriented Architecture and organising legacy, new development and 3rd party solutions into

an integrated array of web services is changing the payments landscape. The opportunity to slowly migrate

towards replacement, component by component, rather than a big-bang implementation is appealing.

Additionally, once operational, the component blocks of functionality can be easily changed and amended to

meet changing needs without any development projects; simple configuration changes can fundamentally alter

operation processes. The web service manipulation is further extended by concepts such as Adaptive-SOA (see

below) which opens up the data for enhancements, again without any development.

It is no longer about buy, building or partnering, it is a matter of combining all three into the optimal solution taking

maximum benefit from established solutions, enhanced by the best of market offerings for niche capability.

13Clarity in Payments

The Response

Clear2Pay offers world class solutions based on the Open Payment Framework (OPF), a library of component

building blocks from which payments solutions can be derived and is built entirely on a Service-Oriented

Architecture (SOA). The Open Payment Framework ships with a comprehensive Software Development Kit (SDK)

providing documented APIs, customisation patterns and a suite of reusable frameworks.

From the Open Payment Framework, Clear2Pay has created pre-defined solutions around the Bank Payment Hub

including Domestic Payments, International Payments, SEPA, Remittance, Imaged Check Processing and EBPP,

as well as eBanking for retail, small business and corporate payments.

The Open Payment Framework

The Open Payment Framework is built entirely on a Service-Oriented Architecture (SOA) delivering common,

reusable services consisting of a comprehensive data model, choreographed payment business processes

and configurable services including parsing, validation, cost based routing, warehousing security, auditing

and many more.

The OPF increases the payment transparency and visibility across the whole financial supply chain. Capable of

operating in mature environments and making the most appropriate use of incumbent internal and 3rd party

solutions, the Open Payment Framework maximises the synergy between diverse infrastructures.

Clear2Pay White Paper14

Adaptive-SOA – a Grey Box Solution
SOA provides a framework on which applications and services can be shared and extensively reused. But this

is not the whole story. Many computer solutions are a black box with data going in at one end and coming out

of the other after some due processing. Adaptive-SOA is a concept whereby SOA systems can open their data

model to real-time adaptation.

Classic packaged solutions offer little freedom to customise and extend services as opposed to bespoke

custom built solutions. Adaptive-SOA offers predefined functionality like a package, but this can be easily

extended and changed on demand. This represents all the advantages of both a package product (quick

implementation, regular upgrades, etc.) and a custom build (flexible and extensible functionality) – but without

the disadvantages of either.

The OPF not only provides a set of callable black-box business services: each individual service can be fully

customised and extended. This “Adaptive-SOA” approach offers the best of both worlds; the payment process

flow can be fine-tuned by invoking a rich set of business services and each service can be adapted to the specific

needs of the bank. The OPF allows the adaptation of the underlying data model; the Adaptive-SOA grey box

approach enables the customisation teams to incorporate these extensions in the individual services. Meta-data

describing the underlying data model is used by the Adaptive-SOA services and can be fully extended.

Adaptive-SOA Services

Rapid re-configuration of IT services is a new concept. Adaptive-SOA takes the SOA concept a step further

whereby business managers can change the way a service operates with a greatly reduced involvement from

IT department and therefore faster to market. Altering the process steps or conditions, or even adding a new

process altogether maximises system agility.

The ability to modify the services and flows quickly is a powerful tool to business. Adaptive-SOA greatly eases

the addition of new validation rules to counter legislative changes, extending fraud detection on specific

conditions, etc. through intuitive graphic interfaces and configuration parameterisation. This implies that, for

example, routing or submitter rules and formats can be modified through the SDK extension points. New back-

office systems or services can be added dynamically and new routing destinations, and their applicable rules

and formats, are now just configuration elements. These changes will not impact the overall business flow of

operations but enable sophisticated fine tuning of the solution with minimal risk, impact and cost.

15Clarity in Payments

Adaptive-SOA Data Models

Adaptive-SOA allows major dynamic adaptations in the data model, irrespective of the potential multitude of

databases underpinning the solution. In simple terms, this permits new attributes to be added to existing

domain objects; e.g. add a new customer field of ‘SocialSecurityNumber’ to the customer database. An all this

is done via configuration parameters.

A Layered Approach
The Open Payment Framework is built on the

principle of independent layers and logically

grouped services. The visibility services manage

customer interactions calling on the business

services to move instructions through their life-

cycle. Access to the Data Access Layer is totally

independent from these services. All services are

defined with a contract defining what they can

do, what data they can access and what other

services they can call. Clear2Pay have defined a

standard implementation with pre-built validation

rules, routing options, notification properties, etc.

which can be customised as required.

Data Access Layer
The Data Access Layer (DAL) is a highly performant extensible persistency layer that provides a common set

of persistence services for accessing and manipulating elements of payment system domain models. The DAL

maintains concepts surrounding static data (banks, customers, agreements, etc.), payment data (interchanges,

instructions, transactions, etc.), permissions and user roles, and auditing and history information.

Within the DAL, new data entities can be created, updated, deleted and queried on search criteria. The flexibility

extends to supporting batch file mass-updates. The DAL provides common set of persistence services for

accessing and manipulating elements of the domain model. This implies flexible configurable control of static

data (Banks, Customers, Agreements, etc.), payment data (Interchanges, Instructions, and Transactions),

permissions and user roles, auditing and history information.

The SDK provides scenarios to add new attributes to existing domain objects using either “Dynamic Attributes”

or “Polymorphic behaviour”. Additionally, new domain objects can be added using DAO handler classes.

Common Services
The Open Payment Framework provides an extensive array of common services available to all service layers

within the framework. These include controlling user access to functions and data according to pre-defined

user group membership. Roles can be defined within the system providing various levels of data and functional

access for that role. This extends to authorisation levels within the framework, all flexibly configurable and open

to integration with internal legacy solutions (e.g. CRM, etc.).

Clear2Pay White Paper16

Open Standards
The Open Payment Framework is based on industry standard best practices and standard frameworks. The

architecture leverages the following technologies:

J2EE 1.4

Struts and Tiles 1.2.�

Hibernate 3.1.2

JAAS 1.4

SOAP/XML/XSLT

BPEL 1.1

The reference platform is Linux/WebSphere/Oracle and utilises WebSphere Process Server 6.0 - IBM’s Business

Process Manager (BPM) tool for BPEL flow management. Ports can be made to AIX and Solaris, DB2. The robust

Service-Oriented Architecture provides for extensibility throughout the application architecture.

The SDK – Customisation through Extension Points

The Open Payment Framework is delivered as a software development kit (SDK) through documented APIs,

customisation patterns and a suite of reusable frameworks. The guiding design principles are a set of different

customisation scenarios and use cases (e.g. Write New Validation Rules or Customise the Submission Service).

The SDK provides set of guidelines and documentation concerning the predefined extension points and public

API’s. These include the EJB/WSDL interfaces, POJO interfaces and access to the XML Configuration files

and BPEL flows. The SDK comes with code samples and best practice guidelines on how to customise the

implemented product.

SDK Deliverables
The SDK delivers all the necessary artefacts to customise and build the OPF-derived payments solution. These

include the .jar files, .config files and any 3rd Party .jar files deemed appropriate. This also includes the SDK

Project Workspace to assist development based on well-defined project structure and the SDK InfoCenter

holding all technical docs, samples, config files, javadoc, database schema, best practices, etc. The SDK fully

supports backwards compatibility of custom and core libraries.

▪

▪

▪

▪

▪

▪

1�Clarity in Payments

Extending with the SDK
The SDK enables the customisation of the payment flow, modification of the behaviour of individual business

services and the extension of the underlying data model. One of the many possible customisation scenarios is to

add additional data fields to the payment repository. The SDK guides the user through the customisation of the

parser to capture new fields, customise validation rules, change submission to include new fields and customise

JSP to show fields.

Another scenario would be the ability to alter the routing and clearing rules based on configurable criteria.

It is possible to instantly alter business process rules and controls without having to resort to development

delays. Similarly, submitter changes require only alterations to some Java code from the standard interface – no

reimplementation is needed.

Similar flexibility is offered throughout the solution wrestling control from development partners back into the

hands of the in-house business experts.

SDK InfoCenter
The SDK InfoCenter is an integrated “help system” documenting the Open Payment Framework product and SDK

scenarios. The content is logically grouped so developers can readily find the necessary information (Getting

Started, Concepts, Tasks, References and Samples). The target audience is the project teams and other users

who need to customise the standard behaviour of the OPF-derived payment solution.

The SDK InfoCenter contains reference documents on architecture, technical design documents on Business

Services and the data model. It contains numerous examples on how to use, configure and extend services

including “public” interfaces and classes. All configuration files are described along with the full database

schema.

Kick-start Development with the SDK Workspace
The SDK Workspace provides a complete development environment for IBM WebSphere Integration Developer.

This offers accelerated customisation to developers providing all necessary scripts and example projects. It

defines where the developers work and splits the artefacts and libraries into core (product) and custom (project)

areas. The platform ships with the necessary build scripts and best practices regarding managing the class paths

and handling the manifest files. Importantly, custom code is not connected to the core product code to ensure

backwards compatibility of the product. New versions can be released without impacting any custom changes

made on the previous version.

Clear2Pay White Paper18

Future Perspective

Service-Oriented Architecture is based on the use of distributed objects and components and is the next

evolutionary step in computing environments. SOA does not have a standardised, reference model yet; however,

implementations share the main concepts of services, service descriptions, advertising and discovery, the

specification of an associated data model, and the use of a service contract. A SOA may also implement optional

concepts that include a service consumer, a service client, acceptance of the service contract and invoking the

service.

There are many business drivers affecting the development of a standardised SOA reference model. Once this

is achieved, SOA will likely be part of the solution for many business and world issues.

19Clarity in Payments

Clear2Pay White Paper20

Clear2Pay NV/SA

Schaliënhoevedreef 20A
B-2800 Mechelen
P: +32 15 79 52 00
F: +32 15 79 52 01
E: info@clear2pay.com
w: www.clear2pay.com

